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Optimizing and updating LoRa communication
parameters: a Machine Learning approach

Ruben M. Sandoval, Student Member, IEEE, Antonio-Javier Garcia-Sanchez and Joan Garcia-Haro, Member, IEEE

Abstract—LoRa is an extremely flexible low-power wide-area
technology that enables each IoT node to individually adjust
its transmission parameters. Consequently, the average per-node
throughput of LoRa-based networks has been mathematically
formulated and the optimal network-level configuration derived.
For end nodes to update their transmission parameters, this
centrally-computed global configuration must then be dissemi-
nated by LoRa gateways. Unfortunately, the regional limitations
imposed on the usage of ISM bands –especially those related to
the maximum utilization of the band– pose a potential handicap
to this parameter dissemination. To solve this problem, a set of
tools from the Machine Learning field have been used. Precisely,
the updating process has been formulated as a Reinforcement
Learning (RL) problem whose solution prescribes optimal dis-
seminating policies. The use of these policies together with the
optimal network configuration has been extensively analyzed and
compared to other well-established alternatives. Results show an
increase of up to 147% in the accumulated per-node throughput
when our RL-based approach is employed.

Index Terms—Reinforcement Learning, LoRa, throughput op-
timization, Machine Learning.

I. INTRODUCTION

Low-power wide-area (LPWA) networks have recently been
attracting great attention in the IoT community. Expected to be
one of the key enablers of the fourth industrial revolution [1],
LPWA networks provide a good balance between long-range
and low-power communications at the expense of throughput.
Among the most popular LPWA technologies, LoRa [2] excels
for its extremely long battery lifetimes and reduced costs,
especially when compared to its direct competitors (such as
Narrowband IoT) [3]. Based on a proprietary chirp spread
spectrum modulation, one of the most remarkable features
of LoRa is its ability to adjust communication parameters
to foster either low-power or robust links. The two main
parameters are: the Spreading Factor (SF), which regulates the
ratio between symbol rate and chip rate, and the Coding Rate
(CR), which adjusts the ratio between the number of payload
bits and the length of the error-correction code. By increasing
the SF or reducing the CR, more robust transmissions are
achieved at the cost of lengthening the Time on Air (ToA)
of packets, and consequently, power consumption.

This flexibility is coupled with a low-cost philosophy
that not only reduces capital expenditures by cutting down
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transceiver costs, but also decreases operational expenses by
operating in sub-GHz license-free bands. In particular, LoRa
works in the unlicensed ISM bands at 433, 868 or 915 MHz,
depending on the region of operation [4]. However, due to
this use of ISM bands, LoRaWAN networks (that is, networks
where the LoRa modulation technique is used and where the
upper MAC and Network layers are implemented following
the LoRa Alliance standard [5]) are, in many countries, subject
to strict limitations on the amount of time they can use the
shared wireless medium [6]. The amount of time LoRa devices
can use the shared wireless medium is known as Transmission
Duty Cycle (TDC) and is usually expressed as the percentage
of time nodes are allowed to access the shared wireless
medium per hour, e.g. 1% of the time (which translates into
36 seconds per hour).

All in all, LoRaWAN networks are extremely customiz-
able wireless networks capable of individually adjusting the
transmission parameter of their constituent devices. Therefore,
from a network perspective, an optimal global configuration
that encompasses each node transmission parameter can be
found. This would allow us to intelligently optimize the use of
the available communication bandwidth (the scarcest network
resource) so that some predefined figure of merit, such as
the throughput, could be maximized. Note that intelligently
managing the limited bandwidth (to increase throughput) is
of special importance in LoRaWAN networks. As many au-
thors [7]–[9] have pointed out, their reduced bitrate is one
of the most limiting factors in enabling a ubiquitous, real-
time IoT. This is precisely what we have focused our efforts
on in the first part of this work. We have mathematically
modeled the average per-node throughput as a function of the
packet-generation behavior of nodes so their best transmission
parameters can be found.

Since this optimal global configuration must be derived
by some central entity (e.g. a LoRa gateway or a remote
server commanded by it), the individual configuration of
each IoT node must then be disseminated. In doing so, we
have found that the TDC restriction which also applies to
gateways may become an insurmountable limitation, which
can jeopardize the effectiveness of this updating process.
Therefore, intelligently managing this scarce resource, i.e. the
TDC, becomes a must. The derivation of efficient ways of
disseminating new transmission configurations has been posed
as a Reinforcement Learning (RL) problem whose solution
prescribes optimal updating policies. These policies are shown
to outperform traditional alternatives in terms of accumulated
per-node throughput.

Therefore, the main contribution of this paper is twofold:
firstly, a global network configuration that maximizes through-



put has been analytically derived. Secondly, this configuration
is intelligently disseminated to nodes using a set of tools from
the RL field.

The rest of the paper is organized as follows. The related
work is presented in Section II. The mathematical model
for throughput maximization is formulated in Section III.
In Section IV, the TDC limitation is discussed to illustrate
why this constraint may severely affect the dissemination
of the global network configuration. Then, to address this
issue, we introduce an RL-based algorithm for updating the
configuration of individual IoT nodes in such a way that the
accumulated per-node throughput is maximized. In Section V,
we elaborate on the order in which the described steps must be
executed. Implementation details and results are presented in
Section VI. Finally, Section VII summarizes the conclusions
and lessons learned.

II. RELATED WORK

Many works have looked into the effects that different
LoRa transmission configurations have on IoT networks.
For example, determining the overall network capacity of
single-gateway networks [10]–[14], or deriving intricate SF-
allocation schemes that maximize a fairness criteria [15],
[16]. Similarly, other works such as [17]–[19] have proposed
methods to increase network throughput by deriving every
node transmission parameter. However, each of these works
fails to fully regard one of the following aspects:
• They do not acknowledge the heterogeneity of IoT net-

works: [10]–[12], [14]–[16], [18], [19]. These works
either assume that all nodes generate packets at the same
rate, that nodes can only send packets of a fixed length,
or that all IoT nodes are assumed to have the same
importance and role in the network.

• They oversimplify the mathematical model by not con-
sidering some LoRa physical phenomena like the capture
effect (described in Section III) [10], [17] or assume
unrealistic node distributions [12], [14], [17] (e.g. nodes
are evenly distributed).

• A figure of merit is analyzed but not maximized [10]–
[14], a parameter is simply varied (like the number of
nodes) and its effects quantified in terms of throughput
or delay.

Nevertheless, it is indisputable that LoRa-related literature
has increased greatly during the last 3 years. With the aim
of taking a step forward in this direction, we take inspiration
from the above literature and extend it to: acknowledge the
heterogeneity of IoT networks by letting each individual node
generate packets of different importance and length at different
rates. We fully regard the capture effect and let each node
sit in an arbitrary position; hence, not forcing uniform/radial
distributions. Finally, we do this with the aim of maximizing
network throughput and thus, we derive a global network con-
figuration that attains this objective (attaining improvements of
more than 140%).

In contrast to the topic of “analyzing/maximizing LoRa
performance”, much less studied is the problem of updating
the transmission parameters of nodes once the aforementioned

global network configuration has been derived. Especially,
when the TDC constraint is considered. To the best of au-
thors’ knowledge, this is the first time this problem has been
addressed. However, a few studies have underlined that this
TDC limitation can potentially endanger the deployment of
future large-scale LoRaWAN Networks [12], [20], [21]. In
a previous work [22] we proposed a mathematical model,
based on classic Markov Decision Processes (not RL), for
determining the optimal transmission parameters of LoRa
nodes. However, this work is oriented from a node-centric
approach, neglecting packet collisions and not attempting to
derive a network-wise optimal configuration. Furthermore,
whereas in [22] the transmission configuration is computed
within nodes (thus, there is no need for dissemination), in
this work the network-wise optimal configuration is obtained
within gateways and hence, we also propose a mathematically
instructed way of updating the configuration of IoT nodes.
This updating mechanism is based on RL and maximizes a
criteria based on network throughput.

III. LORAWAN NETWORK - PERFORMANCE ANALYSIS
AND OPTIMIZATION

In this section we first analyze the behavior of LoRa
nodes (subsection III-A), paying particular attention to when
and how packets may collide. Based on this analysis, we
mathematically describe the performance of LoRaWAN net-
works as a function of the transmission characteristics of
constituent nodes (subsection III-B). Finally, we present a
method to derive node parameters in such a way that the global
performance is maximized (subsection III-C).

A. LoRa collision window analysis

The MAC of LoRaWAN can be regarded as a variant of the
pure ALOHA algorithm with no collision avoidance/detection.
When orthogonal SFs are considered, each of these SFs
represents a virtual channel through which information can be
conveyed [4]. Note that some works [23]–[25] have indicated
that, under some circumstances of low Signal-to-Noise Ratio
(SNR), SFs are not perfectly orthogonal. However, since the
effects of this imperfect orthogonality have been proved to
depend on: (i) the specific LoRa transceiver, (ii) perceived
SNRs, and (iii) number of deployed nodes [24], and to make
the mathematical model tractable, in this work we assume that
SFs are orthogonal.

Furthermore, as demonstrated in [13], [14], the so-called
capture effect causes more powerful LoRa packets to prevail
over weaker ones, even when both transmissions take place
on the same SF simultaneously. Therefore, for a packet to be
successfully received, the following two conditions must be
satisfied:
• The SNR of the received packet must be high enough.

This will influence the bit-error-rate and, as expected,
larger SNR values lead to more robust transferences.

• No collisions must occur during the transmission of the
packet, or the capture effect will take place. That is, one
of the following conditions must be met:



Fig. 1: The two vulnerable windows of a packet transmission:
the any-packet vulnerable window and the strong-packet vul-
nerable window.

1) No other packets (with the same SF) should be sent dur-
ing the transmission of the packet under consideration.

2) Although there is a same-SF interfering packet (referred
to as P ′): (i) the reception power of such a packet should
be at least 6dB weaker than the interfered transmission
[16], [17], [26] (referred to as P ) and (ii) the gateway
has not locked on it yet (i.e. has not fully started to
receive P ′). This happens when, either P started earlier
than P ′, or P ′ was generated less than 3 symbols sooner
than P (the time needed for the gateway to lock on the
transmission).

Derived from the above second condition, Fig. 1 graphi-
cally represents the capture effect to further describe the two
vulnerable windows of packet transmission. We consider a
scenario in which a packet P is generated by an IoT mote
at t0 and whose Time on Air (ToA) equals T seconds. For the
purpose of illustration, we also consider that there is another
potentially interfering IoT mote generating packets P ′ under
the same SF and whose ToA is T ′. If P ′ is transmitted within
the interval [t0 − T ′, t0 − 3 symbols], it will unavoidably
interfere with P (as the gateway would have locked on
P ′ already). This interval defines the so-called any-packet
vulnerable window for any potentially interfering packet P ′

with ToA T ′. When the any-packet vulnerable window is over,
the strong-packet vulnerable window starts. Then, only packets
P ′, with sufficiently high transmission power may interfere
with P . Specifically, for P to be successfully received, its
perceived reception power must be at least 6dB stronger than
the perceived reception power of P ′ [16], [17], [26]. Note that
the length of this vulnerable window is equal to T seconds +
3 symbols.

In light of the capture effect, when a packet collision takes
place in the strong-packet vulnerable window, the receiver may
still decode the strongest transmission. This effect makes the
LoRaWAN MAC performance slightly superior to ALOHA as
demonstrated by R. Brandborg et al. [27].

B. LoRa performance analysis

In order to mathematically analyze the performance of the
LoRaWAN MAC, we assume that the packet-generation pro-
cess at each node i follows a Poisson distribution, with a mean
generation rate of λi packets per second. This assumption,
which is extensively used in current IoT literature [10], [11],
[14], [17], [28]–[33], is reasonable for networks in which
IoT motes generate packets based on (independently) detected

events, e.g. via sensor readings [22]. Note that Poisson-like
traffic naturally arises when sensors are constantly polled and
checked for certain conditions (e.g. pressure over a given
threshold or the temperature matches some value) and not
when values are periodically sent to the gateway. Therefore,
we focus on the first type of networks (event-driven networks)
in the rest of the work. Note that many industrial/monitoring-
oriented IoT networks can be considered to be event-driven
networks. Furthermore, in this kind of event-driven network,
it may be interesting to let motes generate packets of different
importance. For example, some nodes might be in charge of
supervising critical assets whereas others may simply be re-
porting low-importance measurements. Thus, we acknowledge
the heterogeneity of an IoT network by letting each node i gen-
erate packets of different importance (Gi), length (Li bytes),
and at different rates (λi). Taking this into consideration, the
average throughput per node Γraw (expressed in bytes per
second) for a network of N IoT motes can be computed as:

Γraw =
1

N

N∑
i=1

λi · Li ·Gi. (1)

However, Eq. 1 does not consider the percentage of packets
that get lost due to either low SNR or packet collisions. For the
computation of the former, the Packet Reception Rate (PRR)
of each transmission must be regarded. This figure evaluates
the ratio of packets successfully received in a collision-free
scenario. Unlike many works [14], [24], [34], we acknowledge
the stochastic nature of the reception process by modeling the
PRR as a function of SF, CR and SNR. We mathematically
model the PRR as PRR = f(SF,CR, SNR), which gives us
the probability with which such a packet will be successfully
received by the gateway. The specific characterization of PRR
vs SNR can be found in [22] for a wide variety of SF and CR
values. This way, the average effective throughput per node Γ
of the IoT network is:

Γ =
1

N

N∑
i=1

λi · Li ·Gi · PRRi · φi, (2)

where φi represents the probability of no collisions when
node i transmits. This probability can be derived from the
traditional ALOHA analysis if the two vulnerable windows
described above are considered. Starting with the any-packet
vulnerable window, let Nj ∈ N be the subset of all the nodes
that employ the SF j (the same SF used by node i). The
probability that none of them generate a packet within the
any-packet vulnerable window of node i (φiapvw) is:

φiapvw =
∏
n∈Nj

n 6=i

e−(Tn−3 symbols)·λn , (3)

with Tn the ToA of packets generated by a node n ∈ Nj ,
and λn its packet generation rate. The above formula results
from the assumption that motes generate poisson-based traffic
and from the classic ALOHA analysis [11]. On the other hand,
to study the strong-packet vulnerable window, let Nρ

j ∈ Nj
be the set of nodes whose SF is j and whose reception power
(RXP), perceived by the gateway, is greater than or equal to
ρ dB. The probability that none of these nodes will interfere



with a node i in its strong-packet vulnerable window (φispvw)
is:

φispvw =
∏

n∈NRXPi−6

j

n 6=i

e−(Ti+3 symbols)·λn . (4)

Note that in the equation above, we only consider those
nodes whose RXP is greater than or equal to the RXP
of the node under consideration (i) minus 6 dBs, that is,
n ∈ NRXPi−6

j . Finally, the probability of no collisions in
the transmission of the node i is φi = φiapvw · φispvw.

C. Performance maximization problem
Having a closed-form formula of Γ allows us to mathe-

matically maximize it. That is, we can make each node of
the network (n1, ..., ni, ..., nN ) employ a specific transmission
configuration (ci) in such a way that the average effective
throughput per node is maximized. If configurations are mu-
tually exclusive (that is, a node must choose one and only
one transmission configuration), this problem can be posed
as a classic combinatorial optimization task. Unfortunately,
an exhaustive search is not feasible due to the sheer num-
ber of combinations, and no polynomial-time algorithm is
known to be applicable in a general case, especially when
the problem under optimization does not present a linear or
convex form. To avoid this, instead of forcing nodes to choose
a single configuration, we let nodes use any combination
of them, thus applying a linear relaxation over the binary
(0-1) combinatorial problem. More formally, let ci be the
configuration vector used by node i. The k-th position of this
vector (cki ) indicates the percentage of packets generated by
node i that employs the specific transmission configuration
k. Naturally,

∑
k∈K c

k
i = 1, where K is the total number

of different SF-CR configurations and 0 ≤ cki ≤ 1 for
∀k ∈ K. By allowing motes to use any combination of
configurations, we transform this problem into a bounded
continuous maximization problem, for which faster algorithms
are available. To solve such a maximization problem, we have
to determine the C = {c1, c2, ..., cN} that maximizes Γ, i.e.
COPT. Therefore, the solution to the optimization problem
is a matrix C of dimensions K ×N where, as stated before,
the entry cki indicates the percentage of packets generated by
node i that employs the specific transmission configuration k.
Eq. 5 formally formulates the maximization problem.

maximize
C

Γ =
1

N

N∑
i=1

K∑
k=1

λi · cki · Li ·Gi · PRRki · φki

subject to cki ≤ 1, i = 1, . . . , N and k = 1, . . . ,K.

cki ≥ 0, i = 1, . . . , N and k = 1, . . . ,K.
K∑
k=1

cki = 1,

(5)

where PRRki is the PRR of node i using the transmission
configuration k, and φki is the probability that a collision does
not occur when node i transmits under configuration k. Note
that for each node, we scale its packet generation rate λi by
cki and then aggregate it for all k ∈ K.

IV. DISSEMINATION OF THE OPTIMAL CONFIGURATION

Whereas in the previous section we focused on deriving the
optimal global configuration COPT (middle of Fig. 2), in this
section we elaborate on how and when this configuration is
disseminated to the network (left and right of Fig. 2). First, we
introduce a few background concepts (subsection IV-A) so the
RL problem can be fully described (subsection IV-B). Finally,
we present two methods that foster the reutilization of derived
policies and speed up the learning process (subsections IV-C
and IV-D).

A. General outlook of the problem

The global network configuration COPT that maximizes Γ
must be computed by a centralized entity, such as a LoRa
Gateway or a remote server under its command. This is
a strict requirement because only gateways have a global
vision/perfect knowledge of the network: perceived SNRs,
length of packets, generation rates of nodes, etc. Due to the
nature of LPWA networks, IoT motes remain asleep most of
their lives, oblivious to what occurs in the network.

Therefore, after gathering information about nodes, the gate-
way may decide to (re)compute COPT by solving Eq. 5. Once
this is accomplished, gateways should send the computed ci
to each node i, so it can update its transmission configuration.
However, as indicated in Section I, LoRaWAN networks may
be subject to the TDC limitation, restricting their capacity
to use the shared medium at their will. This unavoidably
poses a potential handicap to the Configuration Updating
process (CU process); the procedure by which gateways update
the transmission configuration of nodes. Since the TDC is
extremely scarce (normally, 36 seconds or less per hour) and
the ToA of updating packets can be relatively long (up to
2-3 seconds), gateways should derive intelligent policies to
update node configurations. This is especially true for very
populated networks, where gateways may easily run out of
TDC. If a gateway spends all its TDC before the CU process is
completed, only a subset of nodes will have their configuration
updated (until some TDC is again available); leading to an
undesirable network state in which the global throughput is
severely degraded. Furthermore, LoRa nodes are asleep most
of the time, offering very short receiving windows after each
of their transmissions. Therefore, gateways can only update the
configuration of a node immediately after receiving a packet
from such a node.

The CU process may again be posed as a maximization
problem, whose solution is a set of actions to be taken.
We propose applying a set of mathematical tools commonly
applied in RL to solve this problem for two main reasons:

• The problem of determining an optimal sequence of
actions in such a way that some performance criteria
is maximized perfectly aligns with RL.That is, we have
an action-taking agent whose optimal behavior must be
found. In these settings, we can leverage the power of RL
tools to make such an entity automatically learn optimal
behavior through experimentation (the feedback signal
known as reward).



• When the event horizon (that is, the time span over which
an action has some measurable impact) is particularly
large, resorting to traditional combinatorial optimization
algorithms is unfeasible. For this purpose, RL algorithms
can exploit event independence to converge faster to an
optimal policy.

B. RL description of the problem

We now present the formalism associated to the problem
so that it can be formulated as a Markov Decision Process,
the basic mathematical tool (and constituent element) of any
RL algorithm. The basic and global idea is that, once COPT

is computed, every time the receiving window of a mote
is opened, gateways must decide which action to take; that
is, to update or not the configuration of such a node (aup
and aup respectively). Updating it alters the current global
configuration (denoted simply as Ct for an instant t), and
the average throughput per node of the network Γt (similarly,
for an instant t). Furthermore, updating the configuration of
a node implies sending a message with ci to node i, and
by doing so, gateways spend some of their TDC. The state
(s) of a given IoT network can be described in terms of
the set of already updated nodes (Nu ∈ N ), the set of
non-updated nodes (Nu ∈ N ), the active receiving windows
W = (w1, w2, ..., wi, ..., wN ) with wi ∈ {0, 1}, and the
remaining TDC of the gateway. Naturally Nu ∪Nu ⇐⇒ N .
Note that W indicates which nodes are potentially available
to update at that precise instant. Also, note that since packets
are randomly generated by IoT motes, W is a random variable
and thus, so is s. Since the throughput depends on this state,
let Γt(s) be the average effective throughput per node of the
network for a given state s, and at an instant t. Furthermore,
let S be the set of all feasible states of the network (whose
size |S|, based on its definition, is equal to 2N + 1), and
A = {aup, aup} the set of all actions a gateway may take.
The goal of the CU process is to follow an updating policy π
such as, for any given state s ∈ S, an optimal action a ∈ A
is taken.

We propose measuring the performance of a policy (Pπ) as
the expected accumulated Γ obtained over a given period of
T seconds when policy π is followed. Pπ , shown in Eq. 6,
is expressed in bytes and represents the expected number of
successfully transmitted bytes (weighted by the importance of
such bytes) in a given period T . Therefore, the optimal policy
(π∗) is simply the policy for which Pπ is maximized.

Pπ = E

[∫ T

t=0

Γt(s) dt | π

]
. (6)

To derive π∗, more traditional reinforcement learning ap-
proaches use tabular methods for which good convergence
properties are known. However, for medium to large-sized
IoT networks, S is too big for π∗ to map every state to
an action [35]. Newer approaches resort to approximation
methods (such as Artificial Neural Networks, ANNs) to model
action policies [36]. The general idea is to iteratively improve
the ANN-defined policy π (by changing its weights vector,

θ) to improve its performance; in our case, defined by Pπ .
Hence, π can be considered a function of θ, the weights
of the ANN that implements such a policy: π = f(θ),
however we use notation π for simplicity. Depending on how
these weights are optimized, we can categorize ANN-based
algorithms into two broad groups, namely gradient-based and
gradient-free optimization methods [37]. The former would
typically employ gradient-ascent to improve θ, whereas the
latter does not.

For RL problems where episodes (T ) are large and the
effects of actions are long-lasting, the convergence of gradient-
free approaches, such as Evolution Strategies (ES) [38], is
generally better than gradient-based techniques (e.g. Policy
Gradients) [39]. Since the CU process can last several hours
(depending on the size of the network), and the effect of
updating a node persists until the end of such a process, we
propose employing ES for this matter. In particular, due to
the remarkably good performance in modern RL tasks, we
employ the variant proposed by OpenAI [39]. ES is a type
of Genetic Algorithm, a black-box optimization metaheuristic
loosely based on natural selection. The basic idea behind
ES is to have a diverse population of ANNs implementing
π. These ANNs are (i) mutated, (ii) their fitness evaluated,
and later (iii) recombined to (iv) form better populations. By
continuously repeating this procedure, the performance of π
tends to improve. See Algorithm 1 for more details on how
ES is applied to the problem at hand. One of the main benefits
of ES, as compared to gradient-based optimization methods,
lies in the invariability of the former to the frequency at which
the agent (i.e. the gateway) acts in the environment [39]. Since
Poisson-based traffic is considered, packets from nodes can be
generated at any time; thus, the time resolution of the problem
is critical. In Markov Decision Process-based RL algorithms
(most of the gradient-based approaches), time is discretized
and thus, packets are only allowed to be generated at discrete
instants, which is an assumption that does not hold true in real
situations.

C. Dimensionality reduction
As indicated by many works [37], [39], [40], ES-like

methods are more efficient in low-dimensional problems; that
is, for ANNs with a low-dimensional parameter space (θ).
Since the dimension of θ largely depends on the size of the
input S (denoted as |S|), and this rapidly scales with the
number of IoT nodes in the network, we propose implementing
a dimensionality reduction technique to speed up ES conver-
gence. Instead of directly feeding the ANN with the state of
the network s ∈ S, this state is first mapped to a new smaller
space s′ ∈ S′, with |S′|<|S| –thus effectively reducing the
dimensionality of θ–. Furthermore, by forcing this new low-
dimensional, compact space to have a fixed size, regardless
of the number of IoT nodes in the network, the computed
optimal policies can be reused in different-sized networks.
Since computing π∗ might potentially take several hours, or
even days, being able to reuse π∗ dramatically facilitates the
applicability of the proposed solution to real-world scenarios.
The reutilization of RL policies is known as transfer learning
[40], and is a major current area of research.



Fig. 2: Steps involved in the proposed solution along with the frequency in which they are executed.

The mapping from the original state space S to the new
state space S′ has been chosen to: (i) permit fixed-length
representations of s′, (ii) make it computable in real time and
in resource-constrained devices such as gateways, and (iii) be
expressive enough to derive π∗. Considering these properties,
we have opted for a hand-crafted size-independent mapping
between S and S′. Learning-based/data-driven methods such
as Variational Autoencoders [41] or Principal Component
Analysis (PCA) [42] have been discarded due to the amount
of data and computational resources required to compute
adequate mappings. Also, note that with these methods, every
time that an IoT mote joined the network, the state space S
would change and thus, a new mapping from S to S′ would
have to be learned by the gateway, which again, is a time/data
consuming task. Eq. 7 describes the state space S′ and how
to compute it. This state s′ ∈ S′ is fed into the ANN policy
network every time the gateway has to make a decision on
whether to update a certain node (i), or not (i.e. s′ is the input
of the ANN):

S′ =



λi, λ̃i
Γi, Γ̃i

TDCCi, ˜TDCCi
Gi, G̃i
TDC

N

(7)

The operator ·̃ applies a min-max normalization1 as
follows (an example is given for λ, but the same procedure also

applies to the rest of the variables): λ̃i =
λi− min

∀j∈Nu

λj

max
∀j∈Nu

λj− min
∀j∈Nu

λj
.

That is, λ̃i indicates the relative packet generation rate of
node i with respect to the rest of non-updated nodes Nu.
In turn, Γi, represents the average effective throughput per
node obtained when node i is updated. TDCCi reflects the
TDC consumption (in seconds) of updating node i, and Gi,
again, specifies the importance of packets generated by node i.
Therefore, a given state s′ consists of absolute values related
to the node and the impact of updating it (λi, Γi, TDCCi,
and Gi), their relative counterparts (λ̃i, Γ̃i, ˜TDCCi, and G̃i),
and the state of the gateway in terms of the remaining TDC
and total number of nodes (N ). Therefore, |S′| (the size of
S′), equals 10. Note that for networks with more than 5 IoT

1The reason why we have opted for applying a normalization technique
is to make NN policies more re-usable by abstracting their input from the
actual scale of λ, Γ, TDCC, and G. Specifically, we have employed min-
max normalization to force inputs to lay within the range [0, 1], thus, having
a very concise and predefined input range.

nodes, a very common situation in LoRa deployments, |S′| is
effectively smaller than |S| –as |S| = 2N + 1–.

D. Pre-training to speed up the learning process

To further accelerate the learning process, the ANN is pre-
trained by using a variant of the teacher-student approach
proposed in [43]. The ANN is first taught and encouraged
to update nodes with high probability. Then, the ES-based
learning process learns to discriminate which nodes should
really be updated. Note that by first teaching the ANN the
perks of always updating nodes and later letting them decide
which updating opportunities should be discarded, the learning
process is speeded up by a factor of 8 in our experiments.

V. FREQUENCY OF THE INVOLVED STEPS

For readers to have a global outlook of the presented
approach, we describe here the main steps into which it can
be divided (see Fig. 2). First, the optimal updating policy π∗

is derived following the steps described in Section IV. This
process has been designed to be carried out only once in the
lifetime of the IoT network as it is a time-consuming process.
The second step, the derivation of COPT , presented in Section
III, should be performed once the network is up and every
time a node is added or removed from the network. When
the new COPT−new is computed, the performance under such
a new global configuration Γ(COPT−new) is compared to the
performance under the old configuration Γ(COPT−old). If this
difference exceeds a given threshold γ, a new CU process
is triggered (completing the last step in Fig. 2). Then, each
time an updating window is open in a node, the gateway
will use π∗ to compute the most adequate action. Note that
the usage of the policy (not its derivation) requires a single
forward pass of the ANN, a process which is known to
be extremely fast –a fraction of a second even in severely
hardware-constrained devices– [44]. The above mentioned
threshold γ, is a design value that trades off consumption of
TDC for Network Performance. Lower threshold values would
keep the network better updated at the expense of consuming
more TDC of the gateway. Finally, to carry out the CU process,
and from an implementation perspective, LoRa gateways could
use the second reception window (RW2) and potentially, a
different frequency channel to further avoid collisions between
uplink and downlink traffic –as suggested in [45]–.



VI. IMPLEMENTATION AND EVALUATION OF THE
PROPOSED SOLUTION

A. Implementation details

For the derivation of COPT, Eq. 5 must be solved. We have
done so by employing Sequential Least Squares programming
(SQP), an iterative method for constrained nonlinear optimiza-
tion problems [46]. Note that other optimization algorithms
could be adopted, and a further analysis on the impact of
this algorithm is left as a future work. SQP optimizes a
(surrogate) quadratic model of the objective function, forcing
both problem constraints and the objective function itself to
be twice continuously differentiable. Although faster parallel
implementations of this algorithm are available [47], for IoT
networks of up to 80-100 nodes, the computation of COPT

does not take more than 2-3 minutes with a normal desktop
computer2 and thus, the non-parallel SciPy implementation
has been used to foster usability in single-core machines like
LoRa Gateways [48]. Should the process be speeded up, LoRa
gateways can offload the computation of COPT to cloud-based
servers.

Regarding the CU process, different architectures of the
ANN that models π have been tested. The best trade-off
between results and training times has been obtained for ANNs
with two hidden layers of 45 and 5 neurons respectively.
ReLUs have been selected as the activation function of the
hidden layers and the logistic function has been chosen as the
activation function of the output, since there is only one output
neuron indicating whether or not to update the IoT node. The
size of the input of the ANN corresponds to the dimension
of S′ plus a bias term, that is, 11 neurons. Note that, thanks
to the reduced size of the state space S′, the total number of
weights (size of θ) is only 776, a relatively small value which
dramatically speeds up the convergence of the ES algorithm.

To derive π∗, a population of 101 ANNs evolves for 1000
iterations (following Algorithm 1). Each iteration simulates a
twelve-hour CU process in 128 different randomly-generated
IoT networks with a particular ANN-based updating policy
π. These simulations have been carried out using the SimPy
simulator [49], a discrete-event Python simulator. The size of
this IoT network varies in a range from 20 to 200 nodes,
and the specific parameters of such nodes are described in
Table I. This process took 58 hours with an 8-core Intel Xeon
server. It is worth remarking that the process of deriving π∗ is
carried out just once in the lifetime of an IoT network and that
it can be shortened by reducing the number of iterations (at
the expense of potentially achieving slightly lower throughput
improvements).

Regarding Algorithm 1, our results (shown in Fig. 3) use
Nits = 1000, Npop = 101, α = 0.01, and σ = 0.1. To
evaluate the performance of each π(θ̃) (line 13 of the pseudo-
code), 128 different randomly-generated IoT networks are
simulated using the parameters specified in Table I. Finally,
since the proposed mathematical model allows arbitrary node
distributions, the node SNR values must be provided. In this
regard, we opt for giving values to this variable instead of

2We tested it in a desktop computer fitted with an i5-7400 CPU, where just
one core was used.

Parameter Value
Packet generation rate (λ) U(0.01, 2) packets/s

Importance of generated packets (G) U(0, 1)
Signal-to-Noise ratio (SNR) U(−23, 23) dB

Transmission power 14dBm (maximum)
Length of packet payloads U(15, 30) bytes

Frequency channels 2 (1 uplink + 1 downlink)
Header length 13 bytes

Bandwidth of LoRa channels 125KHz
Spreading Factors 7, 8, 9, 10, 11, 12

TABLE I: Variables for each IoT node of the network. U(a, b)
represents a uniform distribution ranging from a to b.

assuming a particular node distribution and employing a path-
loss model to obtain such SNR values, which would diffuse
the idea of the proposed model being distribution-agnostic.

Algorithm 1 Derivation of π∗ via ES algorithm and teacher-
student pre-training
1: Input: Initial weight vector θ (of size |θ|) derived
2: by the teacher-student approach
3: σ: Standard deviation for the noise
4: α: Learning Rate
5: Nits: Number of iterations
6: Npop: Population size
7: Output: The weight vector θ of the ANN-modeled π∗
8:
9: for it=1 to it=Nits do

10: Φ← Generate Npop perturbation vectors with N
[
0, σ · I|θ|

]
11: R← empty list
12: for j=1 to j=Npop do
13: θ̃ ← θ + Φ[j] . Perturb θ to generate a new candidate
14: r ← evaluate performance of π(θ̃)
15: R← R+ r . Store the performance of this candidate
16: end for
17: A =

R−E[R]
std(E)

. Compute the normalized performance of each
candidate

18: θ = θ + ( α
Npop·σ

· ΦTA) . Combine them to generate new θ

19: end for

B. Results, methodology and comparisons

With the objective of highlighting the benefits of our
proposal and obtaining a deeper insight into the individual
impact of C and π, reasonable alternatives for the global
configuration, as well as for the updating policy, are also
analyzed:

• The alternative C is obtained by running the Adaptive
Data Rate (ADR) algorithm; yielding CADR. ADR is
widely employed in LoRaWAN networks [7] and it is
the de-facto mechanism for adapting transmission con-
figurations in such networks. Theoretically, the ADR
is a mechanism for optimizing data rates and ToA in
the network [50]. The LoRaWAN network server is in
charge of running the ADR algorithm and making LoRa
gateways inform IoT nodes of the configuration that
should be employed.

• The alternative updating policy is an always update policy
(πau). Every time the updating window of a node i is
open (wi = 1), its new configuration ci is sent. This
also represents the most traditional way of updating the
configuration of IoT nodes.



Fig. 3: Accumulated average throughput per node (in Kbytes)
obtained under: the proposed approach (COPT and π∗) and
the alternative one (CADR and πau). Differences between
them are also covered to illustrate the improvement derived
from using the proposed approach. Standard deviation around
the mean values are included as error bars.

Thus, the results attained under the proposed solution
(which includes the computation of a global network config-
uration, COPT, and its proper dissemination via the adequate
updating policy π∗) are compared to those obtained under the
alternative approach based on using CADR as the network
configuration and updating nodes according to πau. Note that
if a non-optimal C is found, despite intelligently updating the
configuration of nodes via π∗, the attained accumulated per-
node throughput (Pπ) will be sub-optimal. Similarly, if the
true COPT is computed but nodes are updated non-optimally,
Pπ will also be degraded. Therefore, the performance of C
plus π can be jointly and effectively assessed by Pπ .

To obtain (and compare) the aforementioned results, we
have employed SimPy to simulate different-sized networks (20
to 200 nodes). Every network simulation has been repeated
with 100 different random seeds to obtain solid average and
standard deviation values. Each node of the simulated net-
works presents a different value of packet generation rate (λ),
packet importance (G), SNR and length of generated packets
(L). These values are realizations of the random variables
described in Table I; values that are usually found in Lo-
RaWAN networks [22]. As a figure of merit for comparisons,
the accumulated throughput per node (Pπ) over the simulated
twelve-hour period is used (see Eq. 6). Furthermore, all
simulations start with nodes being assigned equally-probable
transmission configurations cki = 1

K .
Fig. 3 represents Pπ for the proposed and alternative

solutions in networks ranging from 20 to 200 nodes. The
differences between both approaches are also shown (in blue)
to illustrate the remarkable improvement derived from using
our solution. Results indicate that it is in larger networks where
our solution truly excels, attaining an improvement of 147%
for 200 nodes. In fact, this performance enhancement seems to

Fig. 4: Average throughput per node (in bytes/s) obtained when
CADR (solid black line) and the proposed COPT (dashed black
line) are used. Relative improvement from using COPT is also
shown (blue line).

Fig. 5: Average accumulated throughput per node (in Kbytes)
obtained when πau (solid black line) and the proposed π∗

(dashed black line) are used. Relative improvement from using
π∗ is also shown (blue line).
consistently increase with the number of nodes, although this
improvement might eventually saturate (as can be derived from
the behavior of Pπ for both approaches). By fully considering
the TDC limitation, which becomes increasingly important
in larger networks, our RL-based proposal consistently out-
performs the most traditional way of managing LoRaWAN
networks. Another result worth remarking on, is the pro-
gressive reduction of the average accumulated throughput per
node in more populated networks. This can be explained by
considering that packet collisions progressively increase when
the number of nodes grows, despite the capture effect reducing
them. However, to validate this and to gain a deeper insight
into the results, the effect of C has been individually analyzed.
The attained average throughput per node (Γ) is computed
when CADR and COPT are adopted.

Fig. 4 illustrates the Γ values obtained for different network
sizes and the two C configurations. It can be seen how the
average throughput per node (expressed in bytes per second)
decreases as the number of nodes grows for both COPT and
CADR. This demonstrates the hypothesis that the reduction
in Pπ is derived from an increase in the number of nodes,
and with it, an increase in the prevalence of collisions and a
reduction of the available throughput per node. Nevertheless,



a consistent increase of between 26% to 67% in the value
of Γ can be observed when the proposed COPT is preferred
over CADR (the network configuration derived from the ADR
mechanism). Also note that the relatively small absolute values
of Γ appreciated across all network sizes and C configurations
are due to the very low data-generation rates of simulated
networks (which are obviously in line with the true nature of
LoRaWAN networks).

To gain a better understanding of the individual effect of a
good updating policy, π∗ and πau policies have been used
to update the same network configuration (COPT). Fig. 5
illustrates the attained Pπ for different network sizes. Standard
deviation (std) around the mean values are included as error
bars. Again, steady improvement is observed as the number of
nodes grows, thus demonstrating the benefits of the proposed
RL-based updating policy, which even with the same network
configuration (C), leads to an increase of up to 60% in Pπ .

C. Evolution of the CU process

A time analysis can also be performed on the Configuration
Updating (CU) process to further appreciate the benefits of the
proposed RL-based updating policy. Fig. 6 represents the first
three hours of the CU process from a threefold perspective:
the percentage of updated nodes with time is depicted in Fig.
6a, the evolution of Γ is presented in Fig. 6b, and Pπ is shown
in Fig. 6c.

It is worth noting that although the raw number of updated
nodes has a direct impact on Pπ , it is not a determining
factor, and therefore, at some points πau disseminates C faster
than π∗ (as can be seen at around 3 hours). However, the
global network-level effect of updating nodes is disregarded
under the πau policy, and as such, in Fig. 6b it can be seen
how Γ can even decrease when certain nodes are updated
(this is clearly observed at around 1.5 hours). Our proposed
method not only considers the global network-level effect
of updating individual nodes but also the rate at which the
updating windows tend to appear, as well as the remaining
TDC. Another important fact derived from the time analysis
of π∗ is that empirical experiments show that, looking at the
scale of hundredths of a byte ( 1

100 byte), Γ monotonically
increases as the CU process completes. This, which does not
hold true for πau, makes our RL-based approach an anytime
method. In other words, should the CU process be interrupted,
the network throughput at time t will always be higher or equal
to the throughput at time t′ (with t′ < t). Again, this is looking
at a scale of 1

100 of a byte. This allows LoRa Gateways to stall
the CU process if they need to generate any downlink traffic
(for which some TDC must be expended), and then continue
the CU process where they have left it. However, if πau is
followed, pausing the CU process may lead to degenerated,
undesirable network states s, in which Γ is severely degraded
(as a result of a temporary increase in the number of packet
collisions).

D. The effect of adding/removing nodes on COPT
When new nodes are added or removed from the network,

a new COPT originates. To speed up the computation of such

(a)

(b)

(c)

Fig. 6: First 3 hours of the CU process for a randomly
generated 60-node network. (a) Percentage of updated nodes.
(b) Average throughput per node. (c) Accumulated average
throughput per node.

a new global configuration, the SQP optimization algorithm
can be started with the previous COPT , which would act
as a good initialization point. From a network-wise point of
view, it is also interesting to analyze how the distribution of
Spreading Factors changes as more nodes are incorporated into
the network. To this end, a base LoRaWAN network of N=40
nodes is simulated with the parameters described in Table II.
Then, we repeat the following experiment three times: 8 more
nodes are added to the network and the distribution of SFs
is analyzed again. That is, we evaluate the base network with



Parameter Value
Packet generation rate (λ) 1

60
packets/s

Importance of generated packets (G) 1
Signal-to-Noise ratio (SNR) U(−23, 23) dB
Length of packet payloads 30 bytes

TABLE II: Variables for each IoT node of the base network. To
isolate the effect of the number of nodes on the network, most
variables are fixed, as opposed to the experiment presented in
Section VI-A

.

(a) (b)

(c) (d)

Fig. 7: Distribution of Spreading Factors (percentage of pack-
ets sent under a particular SF) for the base network described
in Table II for (a) N=40 nodes, (b) N=48 nodes, (c) N=56
nodes, and (d) N=64 nodes.

N=48, N=56, and N=64 nodes. Figure 7 depicts the result of
this experiment. The Y axis represents the percentage of all
packets sent under a particular SF. For example, a value of
0.17 for SF7 (as in Fig. 7A) indicates that 17% of all sent
packets (in the network) are transmitted by using SF7.

When network congestion increases due to the presence of
more nodes, shorter ToAs are preferred to reduce collisions.
This ultimately tips the balance in favor of smaller SFs,
as can be clearly appreciated with the prevalence of SF7
in Fig. 7c and Fig. 7d. It is also worth noting that due
to the unavoidable increase in network congestion, per-node
performance decreases 1.1%, 1.4%, and 1.6% when network
size increases to 48, 56, and 64 nodes respectively. The
interesting fact behind this decrease in performance is that
(i) it is small and (ii) it is non-linear, i.e. adding 16 nodes
does not reduce the performance two times more than adding
8 nodes. These two facts indicate the good scalability of
LoRaWAN networks, which can easily accommodate new
nodes by exploiting shorter SFs when the true COPT is
derived.

E. The effect of node importance Gi on COPT
Similar to the number of nodes in the network, the impor-

tance of packets generated by a node i (Gi) has a measurable
effect on its optimal transmission configuration ci. More

(a) (b)

(c) (d)

Fig. 8: Distribution of SFs for the base network described in
Table II. Distribution of SFs for the node under study (shown
in (a)) and the rest of network nodes (shown in (b)) when all
generate packets of importance G = 1. Distribution of SFs for
the node under study (shown in (c)) and the rest of network
nodes (shown in (d)) when such a node generates packets of
importance G = 30.

important LoRa nodes are expected to be assigned to emptier
SFs, or even make other unimportant nodes leave crucial SFs.

This can be tested by employing the base network presented
in the previous subsection, and while leaving all the variables
fixed, vary the importance G of the packets generated by a
given node i. We present the results of this experiment in
Fig. 8. Again, the Y axis represents the percentage of all
packets sent under a particular SF. In the first column, the
SF distribution of a given node i is depicted. In the second
column, the distribution of SFs of the other 39 nodes of the
network is shown. Conversely, the first row shows the result
of the simulations when said node generates packets with
importance G = 1 (as the rest of nodes in the network), and
the second row covers the results when such a node generates
packets of importance G = 30 (leaving the rest of nodes with
G = 1). It can be easily appreciated how, when all nodes
generate packets of the same importance, the SF distributions
of the node under study and the rest of the network nodes
are almost the same. Conversely, when such a node gains
in importance, the COPT derivation process favors the most
important node by assigning it to a previously emptied SF
(the SF9). This can have many advantages over traditional
node-centric approaches (such as ADR) and is the result of
incorporating the importance of each node in the process of
deriving a global network configuration. Furthermore, it is
worth noting that importance values can be changed over time,
deriving a truly optimal network configuration that can react
to different requirements of network designers.



VII. CONCLUSIONS AND FUTURE WORKS

Based on a thorough analysis of the capture effect and the
LoRa modulation scheme, we have mathematically modeled
the average per-node throughput of LoRaWAN networks. This
model acknowledges the heterogeneity of IoT deployments
by letting each constituent node generate packets of different
importance/length and at a different rate, while not enforcing
any particular node distribution. Thanks to this analytical
approach, the optimization of network performance has been
posed as a maximization problem whose solution yields opti-
mal network-level configurations. The problems derived from
updating/disseminating this centrally-computed configuration
to end nodes have been solved by applying a set of techniques
from the Reinforcement Learning (RL) field. Specifically, we
have made use of the Evolution Strategies (ES) algorithm to
derive optimal disseminating policies that aim to maximize
the accumulated average per-node throughput. Furthermore,
by designing a compact representation of the inner state of
the IoT network, the derived policies can be employed in IoT
deployments of different size; thus allowing us to reuse the
time-consuming learned policies. The training times of the
ES algorithm have also been largely reduced by employing
a teacher-student approach that encourages policies to first
consider the action of disseminating new configurations.

The RL-based updating policies, together with the optimal
network-level configuration, have been compared to the de-
facto alternative: using the LoRaWAN ADR mechanism and
updating nodes greedily. Results show a remarkable increase in
the accumulated average per-node throughput of 147% when
the network is composed of 200 IoT nodes. These results stem
from two sources: (i) using an optimal network-level config-
uration and (ii) optimally updating nodes, as demonstrated
in the experiments conducted. Finally, we have analyzed the
dissemination process from a time perspective and shown that
our approach can be considered an anytime updating method;
thus letting LoRa gateways pause the updating process without
network degradation, should some downlink traffic be gener-
ated.

As part of future work, we plan to experimentally study
the impact (in terms of power consumption and CPU usage)
of the proposed RL algorithm on commercial LoRa gateways.
Also, we plan to study how our proposal could be integrated in
LoRaWAN networks with multiple gateways (e.g. aggregating
transmission configurations from different gateways in a single
updating packet, hence, reducing network congestion). Finally,
and as indicated in Section VI, the impact of the optimization
algorithm on computing COPT will be further studied.
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