
6TiSCH T. Chang, Ed.
Internet-Draft M. Vucinic
Intended status: Standards Track Inria
Expires: 15 June 2020 X. Vilajosana
 Universitat Oberta de Catalunya
 S. Duquennoy
 RISE SICS
 D. Dujovne
 Universidad Diego Portales
 13 December 2019

 6TiSCH Minimal Scheduling Function (MSF)
 draft-ietf-6tisch-msf-10

Abstract

 This specification defines the 6TiSCH Minimal Scheduling Function
 (MSF). This Scheduling Function describes both the behavior of a
 node when joining the network, and how the communication schedule is
 managed in a distributed fashion. MSF is built upon the 6TiSCH
 Operation Sublayer Protocol (6P) and the Minimal Security Framework
 for 6TiSCH.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79 .

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/ .

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 15 June 2020.

Chang, et al. Expires 15 June 2020 [Page 1]

https://tools.ietf.org/pdf/draft-ietf-6tisch-msf-10
https://tools.ietf.org/pdf/rfc2119
https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) December 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Interface to the Minimal 6TiSCH Configuration 4
 3. Autonomous Cells . 5
 4. Node Behavior at Boot . 6
 4.1 . Start State . 6
 4.2 . Step 1 - Choosing Frequency 6
 4.3 . Step 2 - Receiving EBs 6
 4.4. Step 3 - Setting up Autonomous Cells for the Join
 Process . 7
 4.5 . Step 4 - Acquiring a RPL Rank 7
 4.6 . Step 5 - Setting up first Tx negotiated Cells 8
 4.7 . Step 6 - Send EBs and DIOs 8
 4.8 . End State . 8
 5. Rules for Adding/Deleting Cells 8
 5.1 . Adapting to Traffic 9
 5.2 . Switching Parent . 11
 5.3 . Handling Schedule Collisions 11
 6. 6P SIGNAL command . 12
 7. Scheduling Function Identifier 12
 8. Rules for CellList . 13
 9. 6P Timeout Value . 13
 10. Rule for Ordering Cells 14
 11. Meaning of the Metadata Field 14
 12. 6P Error Handling . 14
 13. Schedule Inconsistency Handling 15
 14. MSF Constants . 15
 15. MSF Statistics . 15
 16. Security Considerations 16
 17. IANA Considerations . 17
 17.1 . MSF Scheduling Function Identifiers 17
 18. References . 17
 18.1 . Normative References 17

Chang, et al. Expires 15 June 2020 [Page 2]

https://tools.ietf.org/pdf/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) December 2019

 18.2 . Informative References 18
 Appendix A . Contributors . 19
 Appendix B . Example of Implementation of SAX hash function . . . 19
 Authors’ Addresses . 20

1. Introduction

 The 6TiSCH Minimal Scheduling Function (MSF), defined in this
 specification, is a 6TiSCH Scheduling Function (SF). The role of an
 SF is entirely defined in [RFC8480]. This specification complements
 [RFC8480] by providing the rules of when to add/delete cells in the
 communication schedule. This specification satisfies all the
 requirements for an SF listed in Section 4.2 of [RFC8480] .

 MSF builds on top of the following specifications: the Minimal IPv6
 over the TSCH Mode of IEEE 802.15.4e (6TiSCH) Configuration
 [RFC8180], the 6TiSCH Operation Sublayer Protocol (6P) [RFC8480], and
 the Minimal Security Framework for 6TiSCH
 [I-D.ietf-6tisch-minimal-security].

 MSF defines both the behavior of a node when joining the network, and
 how the communication schedule is managed in a distributed fashion.
 When a node running MSF boots up, it joins the network by following
 the 6 steps described in Section 4 . The end state of the join
 process is that the node is synchronized to the network, has mutually
 authenticated to the network, has identified a routing parent, and
 has scheduled one negotiated Tx cell (defined in Section 5.1) to/from
 its routing parent. After the join process, the node can
 continuously add/delete/relocate cells, as described in Section 5 .
 It does so for 3 reasons: to match the link-layer resources to the
 traffic, to handle changing parent, to handle a schedule collision.

 MSF works closely with RPL, specifically the routing parent defined
 in [RFC6550]. This specification only describes how MSF works with
 one routing parent, which is phrased as "selected parent". The
 activity of MSF towards to single routing parent is called as a "MSF
 session". Though the performance of MSF is evaluated only when the
 "selected parent" represents node’s preferred parent, there should be
 no restrictions to go multiple MSF sessions, one per parent. The
 distribution of traffic over multiple parents is a routing decision
 that is out of scope for MSF.

 MSF is designed to operate in a wide range of application domains.
 It is optimized for applications with regular upstream traffic (from
 the nodes to the DODAG root).

 This specification follows the recommended structure of an SF

Chang, et al. Expires 15 June 2020 [Page 3]

https://tools.ietf.org/pdf/rfc8480
https://tools.ietf.org/pdf/rfc8480
https://tools.ietf.org/pdf/rfc8480#section-4.2
https://tools.ietf.org/pdf/rfc8180
https://tools.ietf.org/pdf/rfc8480
https://tools.ietf.org/pdf/rfc6550

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) December 2019

 specification, given in Appendix A of [RFC8480] , with the following
 adaptations:

 * We have reordered some sections, in particular to have the section
 on the node behavior at boot (Section 4) appear early in this
 specification.
 * We added sections on the interface to the minimal 6TiSCH
 configuration (Section 2), the use of the SIGNAL command
 (Section 6), the MSF constants (Section 14), the MSF statistics
 (Section 15).

2. Interface to the Minimal 6TiSCH Configuration

 In a TSCH network, time is sliced up into time slots. The time slots
 are grouped as one of more slotframes which repeat over time. The
 TSCH schedule instructs a node what to do at each time slots, such as
 transmit, receive or sleep [RFC7554]. In case of a slot to transmit
 or receive, a channel is assigned to the time slot. The tuple (slot,
 channel) is indicated as a cell of TSCH schedule. MSF is one of the
 policies defining how to manage the TSCH schedule.

 A node implementing MSF SHOULD implement the Minimal 6TiSCH
 Configuration [RFC8180], which defines the "minimal cell", a single
 shared cell providing minimal connectivity between the nodes in the
 network. The MSF implementation provided in this specification is
 based on the implementation of the Minimal 6TiSCH Configuration.
 However, an implementor MAY implement MSF based on other
 specifications as long as the specification defines a way to
 advertise the EB/DIO among the network.

 MSF uses the minimal cell for broadcast frames such as Enhanced
 Beacons (EBs) [IEEE802154] and broadcast DODAG Information Objects
 (DIOs) [RFC6550]. Cells scheduled by MSF are meant to be used only
 for unicast frames.

 To ensure there is enough bandwidth available on the minimal cell, a
 node implementing MSF SHOULD enforce some rules for limiting the
 traffic of broadcast frames. For example, the Trickle operation
 defined in [RFC6206] is applied on DIO messages [RFC6550]. This
 behavior is out of the scope of MSF.

 MSF RECOMMENDS the use of 3 slotframes. MSF schedules autonomous
 cells at Slotframe 1 (Section 3) and 6P negotiated cells at Slotframe
 2 (Section 5) , while Slotframe 0 is used for the bootstrap traffic
 as defined in the Minimal 6TiSCH Configuration. It is RECOMMENDED to
 use the same slotframe length for Slotframe 0, 1 and 2. Thus it is
 possible to avoid the scheduling collision between the autonomous
 cells and 6P negotiated cells (Section 3). The default slotframe

Chang, et al. Expires 15 June 2020 [Page 4]

https://tools.ietf.org/pdf/rfc8480#appendix-A
https://tools.ietf.org/pdf/rfc7554
https://tools.ietf.org/pdf/rfc8180
https://tools.ietf.org/pdf/rfc6550
https://tools.ietf.org/pdf/rfc6206
https://tools.ietf.org/pdf/rfc6550

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) December 2019

 length (SLOTFRAME_LENGTH) is RECOMMENDED for Slotframe 0, 1 and 2,
 although any value can be advertised in the EBs.

3. Autonomous Cells

 MSF nodes initialize Slotframe 1 with a set of default cells for
 unicast communication with their neighbors. These cells are called
 ’autonomous cells’, because they are maintained autonomously by each
 node without negotiation through 6P. Cells scheduled by 6P
 transaction are called ’negotiated cells’ which are reserved on
 Slotframe 2. How to schedule negotiated cells is detailed in
 Section 5 . There are two types of autonomous cells:

 * Autonomous Rx Cell (AutoRxCell), one cell at a
 [slotOffset,channelOffset] computed as a hash of the EUI64 of the
 node itself (detailed next). Its cell options bits are assigned
 as TX=0, RX=1, SHARED=0.
 * Autonomous Tx Cell (AutoTxCell), one cell at a
 [slotOffset,channelOffset] computed as a hash of the layer 2 EUI64
 destination address in the unicast frame to be transmitted
 (detailed in Section 4.4). Its cell options bits are assigned as
 TX=1, RX=0, SHARED=1.

 To compute a [slotOffset,channelOffset] from an EUI64 address, nodes
 MUST use the hash function SAX [SAX-DASFAA]. The coordinates are
 computed to distribute the cells across all channel offsets, and all
 but the first slot offset of Slotframe 1. The first time offset is
 skipped to avoid colliding with the minimal cell in Slotframe 0. The
 slot coordinates derived from a given EUI64 address are computed as
 follows:

 * slotOffset(MAC) = 1 + hash(EUI64, length(Slotframe_1) - 1)
 * channelOffset(MAC) = hash(EUI64, NUM_CH_OFFSET)

 The second input parameter defines the maximum return value of the
 hash function. Other optional parameters defined in SAX determine
 the performance of SAX hash function. Those parameters could be
 broadcasted in EB frame or pre-configured. For interoperability
 purposes, an example how the hash function is implemented is detailed
 in Appendix B .

 AutoTxCell is not permanently installed in the schedule but added/
 deleted on demand when there is a frame to sent. Throughout the
 network lifetime, nodes maintain the autonomous cells as follows:

 * Add an AutoTxCell to the layer 2 destination address which is
 indicated in a frame when there is no 6P negotiated Tx cell in
 schedule for that frame to transmit.

Chang, et al. Expires 15 June 2020 [Page 5]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) December 2019

 * Remove an AutoTxCell when:
 - there is no frame to transmit on that cell, or
 - there is at least one 6P negotiated Tx cell in the schedule for
 the frames to transmit.
 * The AutoRxCell MUST always remain scheduled after synchronized.
 * 6P CLEAR MUST NOT erase any autonomous cells.

 Because of hash collisions, there will be cases that the AutoTxCell
 and AutoRxCell are scheduled at the same slot offset and/or channel
 offset. In such cases, AutoTxCell always take precedence over
 AutoRxCell. In case of conflicting with a negotiated cell,
 autonomous cells take precedence over negotiated cell, which is
 stated in [IEEE802154]. However, when the Slotframe 0, 1 and 2 use
 the same length value, it is possible for negotiated cell to avoid
 the collision with AutoRxCell.

4. Node Behavior at Boot

 This section details the behavior the node SHOULD follow from the
 moment it is switched on, until it has successfully joined the
 network. Alternative behaviors may involved, for example, when
 alternative security solution is used for the network. Section 4.1
 details the start state; Section 4.8 details the end state. The
 other sections detail the 6 steps of the joining process. We use the
 term "pledge" and "joined node", as defined in
 [I-D.ietf-6tisch-minimal-security].

4.1 . Start State

 A node implementing MSF SHOULD implement the Minimal Security
 Framework for 6TiSCH [I-D.ietf-6tisch-minimal-security]. As a
 corollary, this means that a pledge, before being switched on, may be
 pre-configured with the Pre-Shared Key (PSK) for joining, as well as
 any other configuration detailed in
 ([I-D.ietf-6tisch-minimal-security]). This is not necessary if the
 node implements a security solution not based on PSKs, such as
 ([I-D.ietf-6tisch-dtsecurity-zerotouch-join]).

4.2 . Step 1 - Choosing Frequency

 When switched on, the pledge randomly chooses a frequency among the
 available frequencies, and starts listening for EBs on that
 frequency.

4.3 . Step 2 - Receiving EBs

 Upon receiving the first EB, the pledge continue listening for
 additional EBs to learn:

Chang, et al. Expires 15 June 2020 [Page 6]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) December 2019

 1. the number of neighbors N in its vicinity
 2. which neighbor to choose as a Join Proxy (JP) for the joining
 process

 While the exact behavior is implementation-specific, it is
 RECOMMENDED that after having received the first EB, a node keeps
 listen for at most MAX_EB_DELAY seconds until it has received EBs
 from NUM_NEIGHBOURS_TO_WAIT distinct neighbors, which is defined in
 [RFC8180].

 During this step, the pledge only gets synchronized when it received
 enough EB from the network it wishes to join. How to decide whether
 an EB originates from a node from the network it wishes to join is
 implementation-specific, but MAY involve filtering EBs by the PAN ID
 field it contains, the presence and contents of the IE defined in
 [I-D.ietf-6tisch-enrollment-enhanced-beacon], or the key used to
 authenticate it.

 The decision of which neighbor to use as a JP is implementation-
 specific, and discussed in [I-D.ietf-6tisch-minimal-security].

4.4 . Step 3 - Setting up Autonomous Cells for the Join Process

 After selected a JP, a node generates a Join Request and installs an
 AutoTxCell to the JP. The Join Request is then sent by the pledge to
 its JP over the AutoTxCell. The AutoTxCell is removed by the pledge
 when the Join Request is sent out. The JP receives the Join Request
 through its AutoRxCell. Then it forwards the Join Request to the
 JRC, possibly over multiple hops, over the 6P negotiated Tx cells.
 Similarly, the JRC sends the Join Response to the JP, possibly over
 multiple hops, over AutoTxCells or the 6P negotiated Tx cells. When
 JP received the Join Response from the JRC, it installs an AutoTxCell
 to the pledge and sends that Join Response to the pledge over
 AutoTxCell. The AutoTxCell is removed by the JP when the Join
 Response is sent out. The pledge receives the Join Response from its
 AutoRxCell, thereby learns the keying material used in the network,
 as well as other configurations, and becomes a "joined node".

 When 6LoWPAN Neighbor Dicovery ([RFC8505]) (ND) is implemented, the
 unicast packets used by ND are sent on the AutoTxCell. The specific
 process how the ND works during the Join process is detailed in
 [I-D.ietf-6tisch-architecture].

4.5 . Step 4 - Acquiring a RPL Rank

 Per [RFC6550], the joined node receives DIOs, computes its own Rank,
 and selects a routing parent.

Chang, et al. Expires 15 June 2020 [Page 7]

https://tools.ietf.org/pdf/rfc8180
https://tools.ietf.org/pdf/rfc8505
https://tools.ietf.org/pdf/rfc6550

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) December 2019

4.6 . Step 5 - Setting up first Tx negotiated Cells

 Once it has selected a routing parent, the joined node MUST generate
 a 6P ADD Request and install an AutoTxCell to that parent. The 6P
 ADD Request is sent out through the AutoTxCell with the following
 fields:

 * CellOptions: set to TX=1,RX=0,SHARED=0
 * NumCells: set to 1
 * CellList: at least 5 cells, chosen according to Section 8

 The joined node removes the AutoTxCell to the selected parent when
 the 6P Request is sent out. That parent receives the 6P ADD Request
 from its AutoRxCell. Then it generates a 6P ADD Response and
 installs an AutoTxCell to the joined node. When the parent sends out
 the 6P ADD Response, it MUST remove that AutoTxCell. The joined node
 receives the 6P ADD Response from its AutoRxCell and completes the 6P
 transaction. In case the 6P ADD transaction failed, the node MUST
 issue another 6P ADD Request and repeat until the Tx cell is
 installed to the parent.

4.7 . Step 6 - Send EBs and DIOs

 The node starts sending EBs and DIOs on the minimal cell, while
 following the transmit rules for broadcast frames from Section 2 .

4.8 . End State

 For a new node, the end state of the joining process is:

 * it is synchronized to the network
 * it is using the link-layer keying material it learned through the
 secure joining process
 * it has selected one neighbor as its routing parent
 * it has one AutRxCell
 * it has one negotiated Tx cell to the selected parent
 * it starts to send DIOs, potentially serving as a router for other
 nodes’ traffic
 * it starts to send EBs, potentially serving as a JP for new pledge

5. Rules for Adding/Deleting Cells

 Once a node has joined the 6TiSCH network, it adds/deletes/relocates
 cells with the selected parent for three reasons:

 * to match the link-layer resources to the traffic between the node
 and the selected parent (Section 5.1)
 * to handle switching parent or(Section 5.2)

Chang, et al. Expires 15 June 2020 [Page 8]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) December 2019

 * to handle a schedule collision (Section 5.3)

 Those cells are called ’negotiated cells’ as they are scheduled
 through 6P, negotiated with the node’s parent. Without specific
 declaring, all cells mentioned in this section are negotiated cells
 and they are installed at Slotframe 2.

5.1 . Adapting to Traffic

 A node implementing MSF MUST implement the behavior described in this
 section.

 The goal of MSF is to manage the communication schedule in the 6TiSCH
 schedule in a distributed manner. For a node, this translates into
 monitoring the current usage of the cells it has to the selected
 parent:

 * If the node determines that the number of link-layer frames it is
 attempting to exchange with the selected parent per unit of time
 is larger than the capacity offered by the TSCH negotiated cells
 it has scheduled with it, the node issues a 6P ADD command to that
 parent to add cells to the TSCH schedule.
 * If the traffic is lower than the capacity, the node issues a 6P
 DELETE command to that parent to delete cells from the TSCH
 schedule.

 The node MUST maintain two separate pairs of following counters for
 the selected parent, one for the negotiated Tx cells to that parent
 and one for the negotiated Rx cells to that parent.

 NumCellsElapsed : Counts the number of negotiated cells that have
 elapsed since the counter was initialized. This counter is
 initialized at 0. When the current cell is declared as a
 negotiated cell to the selected parent, NumCellsElapsed is
 incremented by exactly 1, regardless of whether the cell is used
 to transmit/receive a frame.
 NumCellsUsed: Counts the number of negotiated cells that have been
 used. This counter is initialized at 0. NumCellsUsed is
 incremented by exactly 1 when, during a negotiated cell to the
 selected parent, either of the following happens:
 * The node sends a frame to the parent. The counter increments
 regardless of whether a link-layer acknowledgment was received
 or not.
 * The node receives a valid frame from the parent. The counter
 increments only when the frame is a valid IEEE802.15.4 frame.

 The cell option of cells listed in CellList in 6P Request frame

Chang, et al. Expires 15 June 2020 [Page 9]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) December 2019

 SHOULD be either Tx=1 only or Rx=1 only. Both NumCellsElapsed and
 NumCellsUsed counters can be used to both type of negotiated cells.

 As there is no negotiated Rx Cell installed at initial time, the
 AutoRxCell is taken into account as well for downstream traffic
 adaptation. In this case:

 * NumCellsElapsed is incremented by exactly 1 when the current cell
 is AutoRxCell.
 * NumCellsUsed is incremented by exactly 1 when the node receives a
 frame from the selected parent on AutoRxCell.

 Implementors MAY choose to create the same counters for each
 neighbor, and add them as additional statistics in the neighbor
 table.

 The counters are used as follows:

 1. Both NumCellsElapsed and NumCellsUsed are initialized to 0 when
 the node boots.
 2. When the value of NumCellsElapsed reaches MAX_NUM_CELLS:
 * If NumCellsUsed > LIM_NUMCELLSUSED_HIGH, trigger 6P to add a
 single cell to the selected parent
 * If NumCellsUsed < LIM_NUMCELLSUSED_LOW, trigger 6P to remove a
 single cell to the selected parent
 * Reset both NumCellsElapsed and NumCellsUsed to 0 and go to
 step 2.

 The value of MAX_NUM_CELLS is chosen according to the traffic type of
 the network. Generally speaking, the larger the value MAX_NUM_CELLS
 is, the more accurate the cell usage is calculated. The 6P traffic
 overhead using a larger value of MAX_NUM_CELLS could be reduced as
 well. Meanwhile, the latency won’t increase much by using a larger
 value of MAX_NUM_CELLS for periodic traffic type. For burst traffic
 type, larger value of MAX_NUM_CELLS indeed introduces higher latency.
 The latency caused by slight changes of traffic load can be absolved
 by the additional scheduled cells. In this sense, MSF is a
 scheduling function trading latency with energy by scheduling more
 cells than needed. It is recommended to set MAX_NUM_CELLS value at
 least 4x of the maximum number of used cells in a slot frame in
 recent history. For example, a 2 packets/slotframe traffic load
 results an average 4 cells scheduled (2 cells are used), using at
 least the value of double number of scheduled cells (which is 8) as
 MAX_NUM_CELLS gives a good resolution on cell usage calculation.

 In case that a node booted or disappeared from the network, the cell
 reserved at the selected parent may be kept in the schedule forever.
 A clean-up mechanism MUST be provided to resolve this issue. The

Chang, et al. Expires 15 June 2020 [Page 10]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) December 2019

 clean-up mechanism is implementation-specific. It could either be a
 periodic polling to the neighbors the nodes have negotiated cells
 with, or monitoring the activities on those cells. The goal is to
 confirm those negotiated cells are not used anymore by the associated
 neighbors and remove them from the schedule.

5.2 . Switching Parent

 A node implementing MSF SHOULD implement the behavior described in
 this section.

 Part of its normal operation, the RPL routing protocol can have a
 node switch parent. The procedure for switching from the old parent
 to the new parent is:

 1. the node counts the number of negotiated cells it has per
 slotframe to the old parent
 2. the node triggers one or more 6P ADD commands to schedule the
 same number of negotiated cells with same cell options to the new
 parent
 3. when that successfully completes, the node issues a 6P CLEAR
 command to its old parent

 For what type of negotiated cell should be installed first, it
 depends on which traffic has the higher priority, upstream or
 downstream, which is application-specific and out-of-scope of MSF.

5.3 . Handling Schedule Collisions

 A node implementing MSF SHOULD implement the behavior described in
 this section. The "MUST" statements in this section hence only apply
 if the node implements schedule collision handling.

 Since scheduling is entirely distributed, there is a non-zero
 probability that two pairs of nearby neighbor nodes schedule a
 negotiated cell at the same [slotOffset,channelOffset] location in
 the TSCH schedule. In that case, data exchanged by the two pairs may
 collide on that cell. We call this case a "schedule collision".

 The node MUST maintain the following counters for each negotiated Tx
 cell to the selected parent:

 NumTx: Counts the number of transmission attempts on that cell.
 Each time the node attempts to transmit a frame on that cell,
 NumTx is incremented by exactly 1.
 NumTxAck: Counts the number of successful transmission attempts on
 that cell. Each time the node receives an acknowledgment for a
 transmission attempt, NumTxAck is incremented by exactly 1.

Chang, et al. Expires 15 June 2020 [Page 11]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) December 2019

 Since both NumTx and NumTxAck are initialized to 0, we necessarily
 have NumTxAck <= NumTx. We call Packet Delivery Ratio (PDR) the
 ratio NumTxAck/NumTx; and represent it as a percentage. A cell with
 PDR=50% means that half of the frames transmitted are not
 acknowledged.

 Each time the node switches parent (or during the join process when
 the node selects a parent for the first time), both NumTx and
 NumTxAck MUST be reset to 0. They increment over time, as the
 schedule is executed and the node sends frames to that parent. When
 NumTx reaches MAX_NUMTX, both NumTx and NumTxAck MUST be divided by
 2. For example, when MAX_NUMTX is set to 256, from NumTx=255 and
 NumTxAck=127, the counters become NumTx=128 and NumTxAck=64 if one
 frame is sent to the parent with an Acknowledgment received. This
 operation does not change the value of the PDR, but allows the
 counters to keep incrementing. The value of MAX_NUMTX is
 implementation-specific.

 The key for detecting a schedule collision is that, if a node has
 several cells to the selected parent, all cells should exhibit the
 same PDR. A cell which exhibits a PDR significantly lower than the
 others indicates than there are collisions on that cell.

 Every HOUSEKEEPINGCOLLISION_PERIOD, the node executes the following
 steps:

 1. It computes, for each negotiated Tx cell with the parent (not for
 the autonomous cell), that cell’s PDR.
 2. Any cell that hasn’t yet had NumTx divided by 2 since it was last
 reset is skipped in steps 3 and 4. This avoids triggering cell
 relocation when the values of NumTx and NumTxAck are not
 statistically significant yet.
 3. It identifies the cell with the highest PDR.
 4. For any other cell, it compares its PDR against that of the cell
 with the highest PDR. If the difference is larger than
 RELOCATE_PDRTHRES, it triggers the relocation of that cell using
 a 6P RELOCATE command.

 The RELOCATION for negotiated Rx cells is not supported by MSF.

6. 6P SIGNAL command

 The 6P SIGNAL command is not used by MSF.

7. Scheduling Function Identifier

 The Scheduling Function Identifier (SFID) of MSF is
 IANA_6TISCH_SFID_MSF.

Chang, et al. Expires 15 June 2020 [Page 12]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) December 2019

8. Rules for CellList

 MSF uses 2-step 6P Transactions exclusively. 6P transactions are
 only initiated by a node towards its parent. As a result, the cells
 to put in the CellList of a 6P ADD command, and in the candidate
 CellList of a RELOCATE command, are chosen by the node initiating the
 6P transaction. In both cases, the same rules apply:

 * The CellList is RECOMMENDED to have 5 or more cells.
 * Each cell in the CellList MUST have a different slotOffset value.
 * For each cell in the CellList, the node MUST NOT have any
 scheduled cell on the same slotOffset.
 * The slotOffset value of any cell in the CellList MUST NOT be the
 same as the slotOffset of the minimal cell (slotOffset=0).
 * The slotOffset of a cell in the CellList SHOULD be randomly and
 uniformly chosen among all the slotOffset values that satisfy the
 restrictions above.
 * The channelOffset of a cell in the CellList SHOULD be randomly and
 uniformly chosen in [0..numFrequencies], where numFrequencies
 represents the number of frequencies a node can communicate on.

 As a consequence of randomly cell selection, there is a non-zero
 chance that nodes in the vicinity installed cells with same
 slotOffset and channelOffset. An implementer MAY implement a
 strategy to monitor the candidate cells before adding them in
 CellList to avoid collision. For example, a node MAY maintain a
 candidate cell pool for the CellList. The candidate cells in the
 pool are pre-configured as Rx cells to promiscuously listen to detect
 transmissions on those cells. If IEEE802.15.4 transmissions are
 observed on one cell over multiple iterations of the schedule, that
 cell is probably used by a TSCH neighbor. It is moved out from the
 pool and a new cell is selected as a candidate cell. The cells in
 CellList are picked from the candidate pool directly when required.

9. 6P Timeout Value

 It is calculated for the worst case that a 6P response is received,
 which means the 6P response is sent out successfully at the very
 latest retransmission. And for each retransmission, it backs-off
 with largest value. Hence the 6P timeout value is calculated as
 ((2^MAXBE)-1)*MAXRETRIES*SLOTFRAME_LENGTH, where:

 * MAXBE is the maximum backoff exponent used
 * MAXRETRIES is the maximum retransmission times
 * SLOTFRAME_LENGTH represents the length of slotframe

Chang, et al. Expires 15 June 2020 [Page 13]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) December 2019

10. Rule for Ordering Cells

 Cells are ordered slotOffset first, channelOffset second.

 The following sequence is correctly ordered (each element represents
 the [slottOffset,channelOffset] of a cell in the schedule):

 [1,3],[1,4],[2,0],[5,3],[6,0],[6,3],[7,9]

11. Meaning of the Metadata Field

 The Metadata field is not used by MSF.

12. 6P Error Handling

 Section 6.2.4 of [RFC8480] lists the 6P Return Codes. Figure 1 lists
 the same error codes, and the behavior a node implementing MSF SHOULD
 follow.

 +-----------------+----------------------+
 | Code | RECOMMENDED behavior |
 +-----------------+----------------------+
 | RC_SUCCESS | nothing |
 | RC_EOL | nothing |
 | RC_ERR | quarantine |
 | RC_RESET | quarantine |
 | RC_ERR_VERSION | quarantine |
 | RC_ERR_SFID | quarantine |
 | RC_ERR_SEQNUM | clear |
 | RC_ERR_CELLLIST | clear |
 | RC_ERR_BUSY | waitretry |
 | RC_ERR_LOCKED | waitretry |
 +-----------------+----------------------+

 Figure 1: Recommended behavior for each 6P Error Code.

 The meaning of each behavior from Figure 1 is:

 nothing: Indicates that this Return Code is not an error. No error
 handling behavior is triggered.
 clear: Abort the 6P Transaction. Issue a 6P CLEAR command to that
 neighbor (this command may fail at the link layer). Remove all
 cells scheduled with that neighbor from the local schedule.
 quarantine: Same behavior as for "clear". In addition, remove the
 node from the neighbor and routing tables. Place the node’s
 identifier in a quarantine list for QUARANTINE_DURATION. When in
 quarantine, drop all frames received from that node.

Chang, et al. Expires 15 June 2020 [Page 14]

https://tools.ietf.org/pdf/rfc8480#section-6.2.4

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) December 2019

 waitretry: Abort the 6P Transaction. Wait for a duration randomly
 and uniformly chosen in [WAIT_DURATION_MIN,WAIT_DURATION_MAX].
 Retry the same transaction.

13. Schedule Inconsistency Handling

 The behavior when schedule inconsistency is detected is explained in
 Figure 1, for 6P Return Code RC_ERR_SEQNUM.

14. MSF Constants

 Figure 2 lists MSF Constants and their RECOMMENDED values.

 +------------------------------+-------------------+
 | Name | RECOMMENDED value |
 +------------------------------+-------------------+
 | NUM_CH_OFFSET | 16 |
 | KA_PERIOD | 1 min |
 | LIM_NUMCELLSUSED_HIGH | 75 |
 | LIM_NUMCELLSUSED_LOW | 25 |
 | MAX_NUM_CELLS | 100 |
 | HOUSEKEEPINGCOLLISION_PERIOD | 1 min |
 | RELOCATE_PDRTHRES | 50 % |
 | SLOTFRAME_LENGTH | 101 slots |
 | QUARANTINE_DURATION | 5 min |
 | WAIT_DURATION_MIN | 30 s |
 | WAIT_DURATION_MAX | 60 s |
 +------------------------------+-------------------+

 Figure 2: MSF Constants and their RECOMMENDED values.

15. MSF Statistics

 Figure 3 lists MSF Statistics and their RECOMMENDED width.

 +-----------------+-------------------+
 | Name | RECOMMENDED width |
 +-----------------+-------------------+
 | NumCellsElapsed | 1 byte |
 | NumCellsUsed | 1 byte |
 | NumTx | 1 byte |
 | NumTxAck | 1 byte |
 +-----------------+-------------------+

 Figure 3: MSF Statistics and their RECOMMENDED width.

Chang, et al. Expires 15 June 2020 [Page 15]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) December 2019

16. Security Considerations

 MSF defines a series of "rules" for the node to follow. It triggers
 several actions, that are carried out by the protocols defined in the
 following specifications: the Minimal IPv6 over the TSCH Mode of IEEE
 802.15.4e (6TiSCH) Configuration [RFC8180], the 6TiSCH Operation
 Sublayer Protocol (6P) [RFC8480], and the Minimal Security Framework
 for 6TiSCH [I-D.ietf-6tisch-minimal-security]. In particular, MSF
 does not define a new protocol or packet format.

 MSF uses autonomous cells for initial bootstrap and the transport of
 join traffic. Autonomous cells are computed as a hash of nodes’
 EUI64 addresses. This makes the coordinates of autonomous cell an
 easy target for an attacker, as EUI64 addresses are visible on the
 wire and are not encrypted by the link-layer security mechanism.
 With the coordinates of autonomous cells available, the attacker can
 launch a selective jamming attack against any nodes’ AutoRxCell. If
 the attacker targets a node acting as a JP, it can prevent pledges
 from using that JP to join the network. The pledge detects such a
 situation through the absence of a link-layer acknowledgment for its
 Join Request. As it is expected that each pledge will have more than
 one JP available to join the network, one available countermeasure
 for the pledge is to pseudo-randomly select a new JP when the link to
 the previous JP appears bad. Such strategy alleviates the issue of
 the attacker randomly jamming to disturb the network but does not
 help in case the attacker is targeting a particular pledge. In that
 case, the attacker can jam the AutoRxCell of the pledge, in order to
 prevent it from receiving the join response. This situation should
 be detected through the absence of a particular node from the network
 and handled by the network administrator through out-of-band means,
 e.g. by moving the node outside the radio range of the attacker.

 MSF adapts to traffics containing packets from IP layer. It is
 possible that the IP packet has a non-zero DSCP (Diffserv Code Point
 [RFC2597]) value in its IPv6 header. The decision whether to hand
 over that packet to MAC layer to transmit or to drop that packet
 belongs to the upper layer and is out of scope of MSF. As long as
 the decision is made to hand over to MAC layer to transmit, MSF will
 take that packet into account when adapting to traffic.

 Note that non-zero DSCP value may imply that the traffic is
 originated at unauthenticated pledges, referring to
 [I-D.ietf-6tisch-minimal-security]. The implementation at IPv6 layer
 SHOULD ensure that this join traffic is rate-limited before it is
 passed to 6top sublayer where MSF can observe it. In case there is
 no rate limit for join traffic, intermediate nodes in the 6TiSCH
 network may be prone to a resource exhaustion attack, with the
 attacker injecting unauthenticated traffic from the network edge.

Chang, et al. Expires 15 June 2020 [Page 16]

https://tools.ietf.org/pdf/rfc8180
https://tools.ietf.org/pdf/rfc8480
https://tools.ietf.org/pdf/rfc2597

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) December 2019

 The assumption is that the rate limiting function is aware of the
 available bandwidth in the 6top L3 bundle(s) towards a next hop, not
 directly from MSF, but from an interaction with the 6top sublayer
 that manages ultimately the bundles under MSF’s guidance. How this
 rate limit is set is out of scope of MSF.

17. IANA Considerations

17.1 . MSF Scheduling Function Identifiers

 This document adds the following number to the "6P Scheduling
 Function Identifiers" sub-registry, part of the "IPv6 over the TSCH
 mode of IEEE 802.15.4e (6TiSCH) parameters" registry, as defined by
 [RFC8480]:

 +----------------------+-----------------------------+-------------+
 | SFID | Name | Reference |
 +----------------------+-----------------------------+-------------+
 | IANA_6TISCH_SFID_MSF | Minimal Scheduling Function | RFC_THIS |
 | | (MSF) | |
 +----------------------+-----------------------------+-------------+

 Figure 4: New SFID in 6P Scheduling Function Identifiers subregistry.

18. References

18.1 . Normative References

 [RFC8180] Vilajosana, X., Ed., Pister, K., and T. Watteyne, "Minimal
 IPv6 over the TSCH Mode of IEEE 802.15.4e (6TiSCH)
 Configuration", BCP 210 , RFC 8180 , DOI 10.17487/RFC8180,
 May 2017, < https://www.rfc-editor.org/info/rfc8180 >.

 [RFC8480] Wang, Q., Ed., Vilajosana, X., and T. Watteyne, "6TiSCH
 Operation Sublayer (6top) Protocol (6P)", RFC 8480 ,
 DOI 10.17487/RFC8480, November 2018,
 < https://www.rfc-editor.org/info/rfc8480 >.

 [RFC6550] Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J.,
 Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur,
 JP., and R. Alexander, "RPL: IPv6 Routing Protocol for
 Low-Power and Lossy Networks", RFC 6550 ,
 DOI 10.17487/RFC6550, March 2012,
 < https://www.rfc-editor.org/info/rfc6550 >.

 [RFC6206] Levis, P., Clausen, T., Hui, J., Gnawali, O., and J. Ko,
 "The Trickle Algorithm", RFC 6206 , DOI 10.17487/RFC6206,
 March 2011, < https://www.rfc-editor.org/info/rfc6206 >.

Chang, et al. Expires 15 June 2020 [Page 17]

https://tools.ietf.org/pdf/rfc8480
https://tools.ietf.org/pdf/bcp210
https://tools.ietf.org/pdf/rfc8180
https://www.rfc-editor.org/info/rfc8180
https://tools.ietf.org/pdf/rfc8480
https://www.rfc-editor.org/info/rfc8480
https://tools.ietf.org/pdf/rfc6550
https://www.rfc-editor.org/info/rfc6550
https://tools.ietf.org/pdf/rfc6206
https://www.rfc-editor.org/info/rfc6206

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) December 2019

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14 , RFC 2119 ,
 DOI 10.17487/RFC2119, March 1997,
 < https://www.rfc-editor.org/info/rfc2119 >.

 [RFC2597] Heinanen, J., Baker, F., Weiss, W., and J. Wroclawski,
 "Assured Forwarding PHB Group", RFC 2597 ,
 DOI 10.17487/RFC2597, June 1999,
 < https://www.rfc-editor.org/info/rfc2597 >.

 [RFC8505] Thubert, P., Ed., Nordmark, E., Chakrabarti, S., and C.
 Perkins, "Registration Extensions for IPv6 over Low-Power
 Wireless Personal Area Network (6LoWPAN) Neighbor
 Discovery", RFC 8505 , DOI 10.17487/RFC8505, November 2018,
 < https://www.rfc-editor.org/info/rfc8505 >.

 [I-D.ietf-6tisch-minimal-security]
 Vucinic, M., Simon, J., Pister, K., and M. Richardson,
 "Minimal Security Framework for 6TiSCH", Work in Progress,
 Internet-Draft, draft-ietf-6tisch-minimal-security-13 , 28
 October 2019, < https://tools.ietf.org/html/draft-ietf-
 6tisch-minimal-security-13 >.

 [I-D.ietf-6tisch-enrollment-enhanced-beacon]
 Dujovne, D. and M. Richardson, "IEEE 802.15.4 Information
 Element encapsulation of 6TiSCH Join and Enrollment
 Information", Work in Progress, Internet-Draft, draft-
 ietf-6tisch-enrollment-enhanced-beacon-06 , 4 November
 2019, < https://tools.ietf.org/html/draft-ietf-6tisch-
 enrollment-enhanced-beacon-06 >.

 [I-D.ietf-6tisch-architecture]
 Thubert, P., "An Architecture for IPv6 over the TSCH mode
 of IEEE 802.15.4", Work in Progress, Internet-Draft,
 draft-ietf-6tisch-architecture-28 , 29 October 2019,
 < https://tools.ietf.org/html/draft-ietf-6tisch-
 architecture-28 >.

 [IEEE802154]
 IEEE standard for Information Technology, "IEEE Std
 802.15.4 Standard for Low-Rate Wireless Personal Area
 Networks (WPANs)", December 2015.

18.2 . Informative References

 [RFC7554] Watteyne, T., Ed., Palattella, M., and L. Grieco, "Using
 IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the
 Internet of Things (IoT): Problem Statement", RFC 7554 ,

Chang, et al. Expires 15 June 2020 [Page 18]

https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://tools.ietf.org/pdf/rfc2597
https://www.rfc-editor.org/info/rfc2597
https://tools.ietf.org/pdf/rfc8505
https://www.rfc-editor.org/info/rfc8505
https://tools.ietf.org/pdf/draft-ietf-6tisch-minimal-security-13
https://tools.ietf.org/html/draft-ietf-6tisch-minimal-security-13
https://tools.ietf.org/html/draft-ietf-6tisch-minimal-security-13
https://tools.ietf.org/pdf/draft-ietf-6tisch-enrollment-enhanced-beacon-06
https://tools.ietf.org/pdf/draft-ietf-6tisch-enrollment-enhanced-beacon-06
https://tools.ietf.org/html/draft-ietf-6tisch-enrollment-enhanced-beacon-06
https://tools.ietf.org/html/draft-ietf-6tisch-enrollment-enhanced-beacon-06
https://tools.ietf.org/pdf/draft-ietf-6tisch-architecture-28
https://tools.ietf.org/html/draft-ietf-6tisch-architecture-28
https://tools.ietf.org/html/draft-ietf-6tisch-architecture-28
https://tools.ietf.org/pdf/rfc7554

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) December 2019

 DOI 10.17487/RFC7554, May 2015,
 < https://www.rfc-editor.org/info/rfc7554 >.

 [I-D.ietf-6tisch-dtsecurity-zerotouch-join]
 Richardson, M., "6tisch Zero-Touch Secure Join protocol" ,
 Work in Progress, Internet-Draft, draft-ietf-6tisch-
 dtsecurity-zerotouch-join-04 , 8 July 2019,
 < https://tools.ietf.org/html/draft-ietf-6tisch-dtsecurity-
 zerotouch-join-04 >.

 [SAX-DASFAA]
 Ramakrishna, M.V. and J. Zobel, "Performance in Practice
 of String Hashing Functions", DASFAA , 1997.

Appendix A . Contributors

 Beshr Al Nahas (Chalmers University, beshr@chalmers.se) Olaf
 Landsiedel (Chalmers University, olafl@chalmers.se) Yasuyuki Tanaka
 (Inria-Paris, yasuyuki.tanaka@inria.fr)

Appendix B . Example of Implementation of SAX hash function

 Considering the interoperability, this section provides an example of
 implemention SAX hash function [SAX-DASFAA]. The input parameters of
 the function are:

 * T, which is the hashing table length
 * c, which is the characters of string s, to be hashed

 In MSF, the T is replaced by the length slotframe 1. String s is
 replaced by the mote EUI64 address. The characters of the string c0,
 c1, ..., c7 are the 8 bytes of EUI64 address.

 The SAX hash function requires shift operation which is defined as
 follow:

 * L_shift(v,b), which refers to left shift variable v by b bits
 * R_shift(v,b), which refers to right shift variable v by b bits

 The steps to calculate the hash value of SAX hash function are:

 1. initialize variable h to h0 and variable i to 0, where h is the
 intermediate hash value and i is the index of the bytes of EUI64
 address
 2. sum the value of L_shift(h,l_bit), R_shift(h,r_bit) and ci
 3. calculate the result of exclusive or between the sum value in
 Step 2 and h
 4. modulo the result of Step 3 by T

Chang, et al. Expires 15 June 2020 [Page 19]

https://www.rfc-editor.org/info/rfc7554
https://www.google.com/search?sitesearch=tools.ietf.org%2Fhtml%2F&q=inurl:draft-+%226tisch+Zero-Touch+Secure+Join+protocol%22
https://tools.ietf.org/pdf/draft-ietf-6tisch-dtsecurity-zerotouch-join-04
https://tools.ietf.org/pdf/draft-ietf-6tisch-dtsecurity-zerotouch-join-04
https://tools.ietf.org/html/draft-ietf-6tisch-dtsecurity-zerotouch-join-04
https://tools.ietf.org/html/draft-ietf-6tisch-dtsecurity-zerotouch-join-04

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) December 2019

 5. assign the result of Step 4 to h
 6. increase i by 1
 7. repeat Step2 to Step 6 until i reaches to 8
 8. assign the result of Step 5 to h

 The value of variable h is the hash value of SAX hash function.

 The values of h0, l_bit and r_bit in Step 1 and 2 are configured as:

 * h0 = 0
 * l_bit = 0
 * r_bit = 1

 The appropriate values of l_bit and r_bit could vary depending on the
 the set of motes’ EUI64 address. How to find those values is out of
 the scope of this specification.

Authors’ Addresses

 Tengfei Chang (editor)
 Inria
 2 rue Simone Iff
 75012 Paris
 France

 Email: tengfei.chang@inria.fr

 Malisa Vucinic
 Inria
 2 rue Simone Iff
 75012 Paris
 France

 Email: malisa.vucinic@inria.fr

 Xavier Vilajosana
 Universitat Oberta de Catalunya
 156 Rambla Poblenou
 08018 Barcelona Catalonia
 Spain

 Email: xvilajosana@uoc.edu

 Simon Duquennoy
 RISE SICS

Chang, et al. Expires 15 June 2020 [Page 20]

Internet-Draft 6TiSCH Minimal Scheduling Function (MSF) December 2019

 Isafjordsgatan 22
 SE- 164 29 Kista
 Sweden

 Email: simon.duquennoy@gmail.com

 Diego Dujovne
 Universidad Diego Portales
 Escuela de Informatica y Telecomunicaciones, Av. Ejercito 441
 Santiago
 Region Metropolitana
 Chile

 Phone: +56 (2) 676-8121
 Email: diego.dujovne@mail.udp.cl

Chang, et al. Expires 15 June 2020 [Page 21]

