
README
Graph theory in Python

graph_gen.py

Édouard Lumet <edouard.lumet@etu.enseeiht.fr>

11 février 2018



Index

Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
User’s guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Programming design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Graph modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
BFS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Go further. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Dijkstra’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
pygraphviz only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1



README : graph_gen.py

Preamble
Thanks for reading me !

The aim of this project is having a better understanding of graph theory and algo-
rithms used in this field. To do that we have to write a program in the programming
language of our choosing that asks a user for the number of vertices. Then there are few
possibilities : create a cycle graph, create a complete graph, remove one vertex from the
graph, run BFS algorithm on the graph and print the BFS tree.

I chose Python for this program because it is a "user-friendly" programming language
that avoids non-graph problem such as pointer issues. Indeed the real questions were most
How to model a graph ? or How to implement algorithm like BFS ?

In this documentation a user’s guide is provided and a more technical section describes
the design of the program with a few explanation about the choices made.

2



README : graph_gen.py

User’s guide

Requirements
Python is an interpreted programming language so there is no need to compile the

code. You just need Python 2.7 (default) installed and the pygraphviz library (which re-
quires Python 2.7 only). On Linux platform with apt, type the following commands in a
prompt :
sudo apt install python-dev graphviz libgraphviz-dev pkg-config
sudo pip install pygraphviz

And that’s all you need !

Features
The following figure shows the menu that represents the different features offered by

the program.

To start, type 1 or 2 to generate either a cycle or a complete graph. Then you can
remove one vertex, run BFS algorithm or print the graph. When you generate a graph it
is text-printed. The same when you remove a vertex. Choosing option 6 will create a file
named graph.png in the same directory as the graph_gen.py program. Running BFS will
also create a file name BFS_tree.png so you will be able to view the BFS tree.

Before generating a new graph you must select option 7 to clear the graph. However
you can save it by copying the graph.dot file but the feature that allows to manage graphs
only with pygraphviz is not developed yet.

3



README : graph_gen.py

Here you have an exemple of what you can do and how to use the program. It’s not
very hard.

4



README : graph_gen.py

5



README : graph_gen.py

Programming design

Graph modelling
In this program, dictionary is used to model graphs because it structure is quite inter-

esting. We define it as follows : the key is an integer and represents one vertex, the value
is a list and represents the neighbors of this vertex (adjacency list).

When creating a graph we just have to iterate from the first vertex to the number
given by the user to create the dictionary. For a cycle graph neighbors are the previous
vertex and the next vertex except for the first and the last vertices which are neighbors.
For a complete graph adjacency list is the list of all the vertices except the vertex itself
so it is easy to build it.

When removing a vertex in a complete graph we just have to remove the key :value
from the dictionary then to cross all the vertices and to remove the vertex in every ad-
jacency list. In a cycle graph we have to modify both adjacency lists of the previous and
the next vertices. For instance when removing B which is between A and C we have to
modify A next neighbor for C and to modify C previous neighbor for A. Then just remove
B from the dictionary.

Therefore we see that dictionaries are useful and easy to use in graph theory. You
can even find an example in the Python doc : https://www.python.org/doc/essays/
graphs/

BFS algorithm

1 #!/usr/bin/python
2 #−∗− coding: utf−8 −∗−
3 from collections import deque
4
5 # This function runs BFS on a graph
6 def bfs(vertex) :
7 """
8 Call this function with the numerous of a vertex to run BFS algorithm
9 on the graph you generated from this vertex.

10 """
11 queue = deque([]) # LIFO, see line 3
12 queue.append(vertex)
13 VISITED[vertex] = True
14 while queue != deque([]):
15 vertex = queue.popleft()
16 BFS_TREE.add_node(vertex)
17 for neighbor in GRAPH[vertex]:
18 if not VISITED[neighbor]:
19 queue.append(neighbor)
20 VISITED[neighbor] = True
21 return BFS_TREE

This algorithm is quite simple. It is based on a queue that can be a list or a real LIFO
(deque from collections). First we have to add the source vertex in the queue and to mark

6



README : graph_gen.py

it. This is why we use a global dictionary called VISITED that has vertices as keys and
booleans as values (True means the vertex is marked/visited). Then while the queue is
not empty we dequeue it and add the vertex in the BFS tree. After that for each vertex
in the adjacency list the vertex recently added we add the non visited yet neighbors in
the queue and mark them.

It is very easy to implement BFS in Python.

Quick pygraphviz overview

pygraphviz is a library that permits to draw a graph. Some functions like add_node(),
add_edge(), write() and draw() are specific to this library. They can add a single
node or an edge then write it in a dot script. It can also draw it in a png file.

7



README : graph_gen.py

Go further. . .

Dijkstra’s algorithm
An other feature to implement could be the Dijkstra’s algorithm. It requires positive

weights on the edges. This algorithm is the most efficient and the quickest to find the
shortest past from one vertex to another vertex in a graph.

First we have to put the distance of each vertex to infinity except the source vertex
which has a distance of 0. We also use the VISITED dictionary. Then while all the vertices
are not visited we select the neighbor with the least distance and mark it. For each of
it neighbors we sum up it distance and the cost between the neighbor and itself. If the
sum is lower than the distance of the neighbor, this sum will be the new distance of the
neighbor and we add it in the tree.

The least distance can be compute with Prim’s algorithm which is a minimum spanning
tree algorithm.

pygraphviz only
A last interesting feature to implement could be the use of pygraphviz only for graph

modelling. No more need to use a dictionary to model a graph and you can write a custom
dot script and load it from the program.

8


